Producing High-Accuracy Lattice Models from Protein Atomic Coordinates Including Side Chains

نویسندگان

  • Martin Mann
  • Rhodri Saunders
  • Cameron Smith
  • Rolf Backofen
  • Charlotte M. Deane
چکیده

Lattice models are a common abstraction used in the study of protein structure, folding, and refinement. They are advantageous because the discretisation of space can make extensive protein evaluations computationally feasible. Various approaches to the protein chain lattice fitting problem have been suggested but only a single backbone-only tool is available currently. We introduce LatFit, a new tool to produce high-accuracy lattice protein models. It generates both backbone-only and backbone-side-chain models in any user defined lattice. LatFit implements a new distance RMSD-optimisation fitting procedure in addition to the known coordinate RMSD method. We tested LatFit's accuracy and speed using a large nonredundant set of high resolution proteins (SCOP database) on three commonly used lattices: 3D cubic, face-centred cubic, and knight's walk. Fitting speed compared favourably to other methods and both backbone-only and backbone-side-chain models show low deviation from the original data (~1.5 Å RMSD in the FCC lattice). To our knowledge this represents the first comprehensive study of lattice quality for on-lattice protein models including side chains while LatFit is the only available tool for such models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fitting Protein Chains to Cubic Lattice is NP-Complete

It is known that folding a protein chain into a cubic lattice is an NP-complete problem. We consider a seemingly easier problem: given a three-dimensional (3D) fold of a protein chain (coordinates of its C(alpha) atoms), we want to find the closest lattice approximation of this fold. This problem has been studied under names such as "lattice approximation of a protein chain", "the protein chain...

متن کامل

Lattice and Off-Lattice Side Chain Models of Protein Folding: Linear Time Structure Prediction Better than 86% of Optimal

This paper considers the protein energy minimization problem for lattice and off-lattice protein folding models that explicitly represent side chains. Lattice models of proteins have proven useful tools for reasoning about protein folding in unrestricted continuous space through analogy. This paper provides the first illustration of how rigorous algorithmic analyses of lattice models can lead t...

متن کامل

The Impact of Local Accuracy in Protein and Rna Structures: Validation as an Active Tool

The enormous wealth of macromolecular structure data already available and the even greaterwealth soon to come—fromstructural genomics, from thepush for atomic-resolution structures, and from the push to solve much larger biological complexes, often including nucleic acids as well as proteins—provides a treasure trove of functional, interactional, and evolutionary data that change the idea how ...

متن کامل

Advantages of fine-grained side chain conformer libraries.

We compare the modelling accuracy of two common rotamer libraries, the Dunbrack-Cohen and the 'Penultimate' rotamer libraries, with that of a novel library of discrete side chain conformations extracted from the Protein Data Bank. These side chain conformer libraries are extracted automatically from high-quality protein structures using stringent filters and maintain crystallographic bond lengt...

متن کامل

Equivalence Classes of Optimal Structures in HP Protein Models Including Side Chains

Lattice protein models, as the Hydrophobic-Polar (HP) model, are a common abstraction to enable exhaustive studies on structure, function, or evolution of proteins. A main issue is the high number of optimal structures, resulting from the hydrophobicity-based energy function applied. We introduce an equivalence relation on protein structures that correlates to the energy function. We discuss th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012